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2.

Abstract

The following pro'blem Is first considered: A plane wave

originating in a semi-infinite layer with one plane "bounding surface, with

constant values of the dielectric constant £, the magnetic permeability /^
,

and the conductivity 0~^ enters a series of r parallel plane layers in

each of which <?, A'.CT are constant but vary from layer to layer, Blx-

pressions are found giving the field at any point. Recursion formules are

derived for the amplitudes of transmitted and reflected waves, including

that of the wave transmitted through the whole multilayer system and that

of the wave reflected by the whole system.

We next consider the situation in which the multilayer is

rerplaced by a single layer in which f, ZX, and O" may vary continuously els

fanctions of one veuriable - the distance perpendicular to the bounding

planes. This problem is approached by considering the given layer as a

limiting case of a multilayer with the thickness of each of its constitu-

ent layers approaching as their number becomes Infinitely great. The

field expressions are thus envelopes of the infinity of multilayer ex-

pressions. The solutions are obtained from differential equations of

Riccati type instead of recursion formalas. Reflection and transmission

coefficients are found. It is also shown that the results for the multi-

layer can be obtained as special cases from the resTilts for the layer with

vsirying parameters. The calculation of the intensities of reflected and

transmitted waves is simplified for many practical cases by formulas

derived from the statement of conservation of energy. Important special

cases are considered, in particular that of normal incidence.
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1, latrodttctioa,

The present paper represente a first step in a new attack on

the proljlem of propagation of electroioagnetic waves in non-homogeneous

atmospheres. The general attack contemplates the integration of effects

due to plane waves which will lead to a coorplez integral to he evaluated

hy one or more methods, for example, that of steepest descent. This

attack is opposed to the reduction of the problem to that of solving a

partial differential equation with boundary conditions leading to the

determination of eigenvalues. It should he possible in this generediza-

tion not only to consider the behavior of radiation from a dipole in a

non-homogeneous meditun but also the radiation of an arbitrary source.

The first step consists of the study of the behavior of plane

waves in media with continuously varying electromagnetic parameters, namely

the dielectric constant, permeability, and the conductivity. Specifically,

this paper will study the behavior of a plane wave which enters a layer

in which these parameters vary continuously, the layer to be bounded by

parallel planes. In order to approach this problem a preliminsiry problem

is first discussed thoroughly, namely the propagation of a plane wave inci-

dent upon a series of parallel plane layers, i.e., layers lying one upon the

other, each bounded by planes, in each of which the electromagnetic para-

meters are constant. This is the problem of the multilayer. From this

study it is possible to pass to the case of a continuoasly varying layer

by allowing the number of parallel plane layers to become infinite while

each becomes infinitely thin. It is assumed in this theory, as well as

in the generalization referred to, that the electromagnetic parameters

vary in one dimension only, namely that which is perpendicular to the layers.

It should be remarked, too, that, while the case of a continuously varying

medium is generally regarded as the ultimate goal in the study of radio

wave propagation under actual meteorological conditions, the study of a

finite number of layers, each of definite but arbitrary thickness, may be

of equal importance in the practical propagation problem, for it may be

desirable from a computational standpoint to approximate a continuous

distribution by a finite number of layers in each of which the electro-

magnetic parameters are constant.

The present paper represents more than a first step in the

direction of the general theory of propagation in non-homogeneous media.



Both the preliminary prohlem of the paper, namely the study of the passage

of a plane wave through a multilayer, sjid the main prohlem of the propaga-

tion of a plane wave through a layer of continuously varying electromag-

netic parameters, are generalizations of that portion of standard electro-

magnetic theory which treats the "behavior of a plane wave striking a plane

boundary between two semi-infinite media,* As thic paper will show, majay

of the results here can immediately be specialized to results found in

Stratton. In particular, one may mention the laws of reflection and re-

fraction in the present paper which reduce to the well known Snell and

Fresnel laws cited in Stratton. The present paper is an extension of

standard theory also in the sense that the three electromagnetic parameters,

i.e., dielectric constant, permeability and conductivity, assume arbitrary

values in each layer in the case of the multilayer, and have arbitrary

functional form, including finite discontinuities, in the case of the

layer of "continuously" varying parameters.

A theory on the propagation of plane waves through layers has

application in ultra-high-frequency engineering independently of its use

in the theory of propsgation through the atmosphere. As an example, often

a surface is coated with a layer of some substance so as to absorb Incident

radiation, which can usually be regarded as being a plane wave. The air,

the coating, as well as the surface coated, constitute three layers and

the present theory can be applied to detenrine the behavior of the incident

radiation. In particular, the reflection and transmission through the

layers and the polarization of the reflected radiation can be determined.

The present theory can also be used, though developments of this nature

have not actually been carried out in this paper, to study the polariza-

tion of reflected waves from a series of layers and to ascertain the condi-

tions under which one may retain the linear polarization of the reflected

wave on the assumption that the incident radiation is also linearly polarized.

In the opening part of the paper we consider the behavior of a

plane wave incident upon a multilayer. Expressions for the field in each

layer are deduced and it is shown how to compute the amplitudes of the

electric and magnetic fields reflected by the entire system as well as the

amplitudes for the radiation transmitted through the whole multilayer. The

treatment of the multilayer also contains extensions of Snell 's Laws of

Reflection and Refraction.

• The more limited standard results may be found in Chapter 9 of Stratton J,

A

Electromagnetic Theory, pages U90 to 52U,
*
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From a dlBcuasiooi of a moltllayer we proceed to the case of

the plane wa7e incident upon a medium 'boaxbded iQr pecrallel planes within

which the electroaagnetic perametere vary continaoasly or hare a finite

number of finite discontinuities. Xxpressions for the eleetrooagnetic

field in the layer of "continaously" varying parameters are obtained, as

are some properties of the wore in the medium. We obtain formulas for

the aaQ>litades of the electric and magnetic fields at any point in the

medium, formolas for the direction of the ware Aront at asy point in the

medixuB constitute an extension of Snell's Lav of Hefraction to a medium

with continuously yaxyiag eleotroaagnatic parameters.

In the theory of the eontixmous layer, reflection and trans-

alssion coefficients, expressing the ratios of the amplitudes of the

electric fields reflected and transmitted to that of the incident field,

are introduced and cooQ>uted. Kore exactly a reflection and a transmission

coefficient are introduced for each component of the incident electric

field, one parallel to the plane of incidence and the other perpendicular

to it. SifflllAT reflection and transmissioa coefficients are computed for

the maltilayer. fhe railues of these coefficients for the special tut very

isrportant case of a plane wave normally incident on the layers is treated

in some detail. The paper then shows how, through energy considerations,

one may ohtain simpler formulas for the trsmsmission and reflection co-

efficients, in the practical case where the medixim carrying the incident

ware is a dielectric.

The theory of the nmltilayer is then applied 'by way of illustra-

tion to two special cases, the first being that of two semi-infinite media

s^peurated by a plane, which is the standard case to he found in Stratton,

and thJi^tii»« o^ iiU^ee ^edla <i^n.r»ted'..H}r two parallel pl«ne ourfaces.

It has been noted that the theory deyeloped here for the layer

of continaously varying parameters includes the case where the parameters

hscve a finite TTumher of finite discontinuities. Hence the theory for the

"continuous" layer actually includes within itself the theory for the

multilayer and all results for the multilayer could have been deduced as a

special case of the former theory. The separate approach to the oniltilayer

is given not merely to base treatment of the nailtilayer on simpler theory "but

also to provide an. intuitive basis for the treatment of the "continuous"

case.
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While no ezhsnstlTe search of the literature has been made in hehalf

of this particular paper, practically all the results ol)tained herein are "be-

lieved to he new, Reference should he made, however, to the paper hy M. E, Rose

on "The Specular Reflection of Plane Wave Pulses in Media of Continuously Vari-

ahle Refractive Properties", Pbyaical Review . Y. 63, Hos. 3 & ^, Feh. 19^+3, PP.

111-120, This paper overlaps the present one in that it ohtains expressions for

a sound wave entering a series of plane layers and ohtains limited results on a

reflection coefficient for this case and the case of a sotind wave entering a

layer with continuously varying dielectric constant.

The writer's first work in the theory of this specific paper was

actually undertaken several years ago in hehalf of some optical problems on

which he was then engaged. The theory contained herein can indeed he applied

to many useful optical problems such as the effect of coating glass with thin

dielectric or metallic films or the effect of Joining severaJ. types of glass

layers. Such applications are now not too far removed from the problems likely

to be encountered in microwave engineering, for the use of dielectrics as micro-

wave lenses is already a familiar technique.

2, The Differential Equations .

^A, '^

('^),M^h<^(^)

yy^^t^o

9
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ITo other aesostptiosis about these functions are made tnxt that the Interval

< z < / can he dlYlded into a finite nomher of suhinterrals in each of

which £ , C5" , zx. axe continuous and have continuous derivatives. The con-

stant values of £ , u , (T in the two "boundary media are called

We assume that a plane wave approaches o\ir meditun from belov (Fig. l). The

normal of the wavefronts makes an angle with the z-axis. The problem

is to investigate the effect which our layer system has on the undisturbed

propagation of the wave .

We base our considerations on Mazwell's Equations

curl H - ^ B. = -=i^ E,etc •

(1)

curl S +A H^ = 0,

in which

E = (E^.Eg.E^)

and

H = (E. ,HpfH_;

ere the electric and magnetic vectors of the field, respectively. These

vectors X and H are,in general, functions of x.y.z and t.

It can be shown that in case of a plane wave radiated by an

harmonic oscillator of angular frequency

IT •

periodic equilibrium is established with increasing time t. In effect we

are dealing with the steady state, disregarding transient effects. The

correspondizig vector functions X and H which describe this equilibrium eore

found to have the form

E = u e ,

(2) iwt
H = V e ,

in which
u = (Uj^.U^.U^) ,

are vectors which depend on x,y,z bat not on t.
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We introduce (2) in Maxwell's Equations (l) and obtain the

differential equations:

i^ 2
curl V m u = 0,

C-UXl U + y^ V = 0,

The qusintity m = n - ink, the complex index of refraction . is defined ty

(4; m = e- —— i.

"his leads to the relations:

2/, .2n (1 - k'^) = f

.

kn^ = ^^ = £A~
6J C *

The plane of incidence is, hy definition, the plane contain-

ing the normal to the "boundary surface, i.e. 'the xy-plane, and the normal

to the wave-front. Without loss of generality we may assume that the

xz-plane coincides with the plane of incidence of the incident wave. It

follows from symmetry considerations that the vectors u and v are inde-

pendent of y, i.e., are functions of x and z only .

For vector functions of this type the curl-operation simpli-

fies to

du au, au, au_
curl u = ( - -^ ,

—-1 1 ,
2 X

dz ' e>z ax * ax'*
3v av av av

curl V = ( - —-=
,

- i . ^ )az • az ax • 3x ' •

and we thus ohtain the following set of differential etjuations from (3):

II2. i^L 2 ^^2
i(J

" dz c ""^l* ~H~"7"T"^1'

(5) av^ av^
_ ^^ 2 ^^ ^^

1 = ^ii^

^^2 _ io 2 -^^2 ,iw

c 2 •
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We conclude from these eqaations: The components u., u ; v , are completely

determined ty the components u„ and t :

^ = i
c ^'2

2 d z '
"^1 ~ yUC^ a 2 •

(6)

u =-i
2

c <^"2

CO

_ , =-£-ii^

Using (6) we can eliminate xl. ,u_; 'i»'''-7 ^^ ^^^ second row of equations

(5), As a result v/e have two partial differential equations of second

order for u_ and Vp :

(7)

m m c

In the first iDoundary medium, in which £,z^ , O are constants,

namely £ ,// > o- • solutions of (7), which can 1)6 interpreted as plane

waves, are given hy the expressions:

io
- -;r^J7^r. (P«^ * q«2) .

Ug = a e

Vg = b e

c o'/"o "-o

i<J

"'o^^^V V^ •

p = sin <^, anc q = cos cp determine the direction of the wavefront.

This observation leads us to try to find solutions of (7),

vsilid in media in which £, «, andO" are functions of z, \riiich have the

special form

^2
=

i6J r-
^0^

(8) iOJ

c oyo -^0^aIjU^ P„x

U(z) ,

V(2) .
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Actually it can "be shown "by a consideration of the transient field that

the field set up "by an harmonic oscillator approaches the form indicated

"by (s) with increasing time. Since we neglect the transient state, how-

ever, we shall show only that the equations (7) can he satisfied "by

functions of the type (8) and that they represent plane waves travelling

through the medium.

If we introduce (8) in equations (7) two ordinary differen-

tial equations for U and 7 are found, namely.

(i|^).^u;«-<^„p^) u = o.

(9)

m c ' /

Upon introdacing

(10)
2 2 2 2

if = sf-LL _ •of
-'^

io/<- - m // p ,

equations (9) become

(11)
' 'O^M^^2(V^)*^V=0.

m

Equations (11 ) are the differentigd equations upon which our discussion

rests.

3. Continuity Conditions.

-^2

Fig. 3

Let us assume that the func-

tions E %M t ^ are discontinuous at a

point z ='lf . Then it must he ex-

pected that

CO

and

m2 _ 2 , 2
M = m M -m M - m u

/ 0/ '0^0
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are also discontinuous functions of z. let it follows from (11) that the

functions U and V are continuous even at such a point of discontinuity of

the medi-um. Indeed, "by integrating (ll) from a point z to an arbitrary-

point z (Pig. 3)» i* follows that

£lO Xr'(2o) ^ _(L J''
m! udz

JIM ^'('o) - <L r U^

m

The indefinite integrals on the right side are continuous even if the
Tji yi

integrands have finite discontinuities. It follows that — and —:? are
/* n

continuous.

From

U(z) - U(Zq) =y^21dz
z. /

V(z) - V(z^) =y m^ ^ dz

z ai

the continuity of U and V follows ty the same argument. Hence we can make

the statement: The functions U(z), V(z) and i.U'(z), i— V'(z) are contina-

ous functions of z.

U. The Multilayer

In order to Justify the method which will be used later to

solve the general case in which £, Z^, CT can vary continuously, we show

first how the continuity conditions can he used to construct the solution

in case of a multilayer. We assume that the interval < z </i8 divided

into r parts of lengths

/l. 4 /r . respectively,

separated by the points
^

5^0 " °' ^1' 5^2 • ^r-1 » ^i
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In every one of the layers It is asstimed that li", A, O" are constant;

^wAV'^0. ^= 0. 1. .... r + 1.

The expressions for the cooponents Up and Vp of the electro-

nagnetic field in each of these layers is given hy (8), where U and V

must satisfy (11). From these expressions for u- and Vp the other

field components are ohtained hy means of (6). Now equations (ll) are

ordinary differential equations of the second order, and in each of our

layers the coefficients are constant. The general solutions are there-

fore

U
ikz ^ -Ikz

= c^ e + c^e

where k is detenained by the values of the coefficients. We may there-

fore say that the general forms of U and V axe known in every layer,

namely:

(
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-i^.(-5)
,.

T3,e which travels forv;ard. The amplitude b in the first

medium^ z < 0. is the amplitude of the incident wave and has to "be con-

sidered as given. The quantity a gives the complete reflection of the

multilayer. The queintity a_a.i ^^ ^^^ value zero since no wave travels

"backwards in the upper hoxindary meditim; "b , on the other hand determines

the total transmission through the complete raultilayer.

Similar formulas are ohtained for the solution V of the

second differential equation (11):

-i44i ..(z-X)
V^, = B^, e ° ^^ ^'
r+l r+l

i^M,(z-^,) -i^,(-^.)

i% (z-r ) -i% (z-/')
7 = A e Be

In order to fix the constants in these expressions we note

first that l-l^is given "by (lO) and (U) with values of f./U
, cr "belonging to

the v* -th layer. The continuity conditions, namely U(z), V(z), -jn—r ,

and continuous, allow us to set up relations hetvreen the coefficients
m (z)

a,, "b^; A^, 3^ . The conditions require that at the surface ^ ~ ^ -A:

4, »„j, •1

an.d at the s\u"faces z ~(\/^t '^ "^ ~ Ofl. ••• > r-1;



These equations lead to the following relations among the coefficients

So' ^^; ^j' ^y-

(12a)

-r * \ = ^^1

^U^ r r^ ^^^ r+l

a . , + h
, , = a., e + t.. e ,V-1 "v/-l '^^^ "i'

(I2h)

and

(13a)

\ * =r = Vl

(13^)

-2— ^Vi - ^»/-i^ " — ^^v/« - ^v^® ^•

Thus we are led to a system of linear recursion formulas for a^ , "b^/and

A^B^;, the solution of which has to satisfy the ooundary conditions,

a , = , t given ,

(11*)
"^^ °

Aj^TL = . B^ given ,

We nnisu solve this system for a^, , "b^and A^,B^ , in terms of knovm values,

i.e., in terms of h , B , M^, andyM^ .
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In order to solve this problem we proceed as follows: We

write equations (12b) and (1313) in terms of trigonometric functions

using the relations, ^ ^K cos k + i sin k and e"^^= cos k-i sin k:

a^_j_ + l3^_j_ = (a^+ "b/) cos M^T^ + i(bjj- a^,) sin U^T^
^

(15)

Mj-1
(a„ 1 - "bj , )

=_^^ ^^-l - °^.i' -/v
_

(a.- bj cos M,T,- i (a + b^) sin M^T^V "V' 'V*!/

and

K-l "*
^v^-l

" ^^v** ^^^ °^^ ^v'^^* ^ ^^V- '^v^^ S^^ ^^^^ .

(16) U M
4=^ (A^_3_ - By_j_) = -4 (A^- B^) cos M^T^- i (A/ B^) sin M,T,

m m.
y—

1

*^

The quantity T^/is defined by

^ /. = 2n (4) .(17) T, - ^ ... ... . ^,

We introduce the auxiliary quantities

e = -i
M^ a,- b^

(18)
A ^v*

H ^ 2A + B^
m^ " ^

By dividing the two equations (I5) and (I6) respectively, and the two

equations (12a) and (13a) respectively,we obtain the following two non-

linear recursion formulae for 9 and Q

:

M
.

(19)

9 - 77- tan M Tj

iH-e^^tanM^T,

M
e = i

r+l

eV-1

^ '®. r '^ ^^'^^

^ /i-l
•

m
r+l
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Since 6 and© are known, quantities it is possible "by successive fi5>pli-

cations of these recursion fonnalae to determine the two sets of quanti-

ties,

®o' ®1' • • • » ®r*

In order to find the amplitudes a^, "b^; A^,, B^^ we proceed as

follows. Writing the first of (18) in the form

(20) -i(a^- -b^) =/^ (a^+ t^) 9^,

we substitute for 1(1)^- a.) in the fifst of (I5) and o"btain

V-1
"* \^1 Mv

By repeated applications of this result we get

(21) a^+ \ = (a^ •»• \) TT ^^ i.
ci= 1 cos 1^T^+^ e^sin UJ^

Solving (18) for T^,ve write
a "O*-
_c

b

a "-'V^^o
(22) ^= ;z;2_.

and thus, adding 1 to "both sides,

2b.
a + h =

1 - i^ 9,

'

M
Hence, substituting for a + b in (21),• ^^ 0*
f 07

1

2b ^
^- ^^% "^^^ °°' ^i^-'^ ®«"^^ "^^
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we obtain "b.^,, which determines the transmission through the multila^'^er,

A and B_.- can he found from the corresponding fonnulae for the magnetic
r+l

field.

5, Interpretation as Eefracted Plane Waves .

The component E of the electric vector in the v* -th layer is

given hy the following expression, on acco-unt of (2) and (g) and using

the solution of the first of (11 ):

The right side can ohviously "be interpreted as the superposition of two

plane waves. Let us introduce p , and <1 . "by the definitions:

E^ = e

(27)

it follows that

rF--
2

)

and thus v;e may interpret p^^, q^ as the direction cosines of the wave

normal, whose inclination to the z-axis is denoted hy^; that is,

P.r sin(;^,.

q^= cos CP^,

Making use of (27), the component E^ becomep

\ ' ^«
-i^M,5^ W m.

t - 'J <̂p^x - q_ z)

J+ b^e
i^K,^ id t-^:!l/^p x+ q zM

A similar expressior can be written for E by replacing a^and b^^ by A^and B^^

respectively.



19.

2 The fact that the reflected

wave has the direction (p^^,- q,) ) if
/K

^y>i-^%y

the transmitted wave has the direction

(p , q^) represents Snell's law of

reflection . The first equation (27)

represents Snell's law of refraction:*

iny/«v sin ^V = mo/^ sinCy^o ~ const.

The laws of reflection and refraction are thus extended to a multilayer.

By using the angles of refraction Cp^ in our layers we may determine the

quantities Vi^ hy the formila,

which follows immediately from the second of (27 )

We have now completely solved the prohlem of transmission and

reflection of a plane wave incident on a multilayer consisting of a fin-

ite numher of parallel, plane, homogeneous layers pf isotropic media.

The expression for E- just ohtained, sind the corresponding expression for

H_, together with (6) and (2), determine the field in each layer. The

amplitudes of the component waves in each layer are given hy (25) and (26).

In particular, the direction and amplitude of the plane wave transmitted

through the entire muitilayer can he coiaputed, as well as the direction

and amplitude of the plane wave reflected hy the multilayer,

6, Continuous Variation of £ ,/< , and CT,

We now consider the problem stated at the outset, namely, the

propagation of a plane wave incident from helow (Fig. 1) on a layer

hounded "by parallel planes, wherein e,>a, and CT vary continuously with

the height z. Oar problem is that of determining U(z) and V(z) satisfying

(11) together with the boundary conditions appropriate to this case.

We think of the layer as consisting of infinitely many, infin-

itely thin parallel layers each with constant £,M , and Cr , We are thus

led to form the sets of functions, containing the parameter ^ ,

* cf . Stratton: Electromagnetic Theory , p U9I,
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(28)

li^M(n(z-p -i^M(r)(z-r)
i:;(z:^) = A(p e ^^ ^ •" +B(^ e ° ^ ^

^

suggested "by the solutions for the multilayer, and to consider that

U(z) =lK(z;r). V(z) =^(z; ^) for the infinitely thin layer at z
=J^.

The functions U(z) and V(z) are thus constructed as envelopes of the two

sets of functions 2/{(z;'p and "Jj^C z ; T) . The former continuity conditions

are replaced hy the conditions that at z =^the functions ^ and X^have

the same values and derivatives as UCr) and V( ?*)»

Expressed as equations, these conditions are

Vl{z;p = U(p, )/)(z;^) - V(p
.

(29)

3 z J d z ^

at z "= ^»

The physicEil interpretation of the formules (28) and (29) is that the

actual propagated wave in the continuously varying layer is constructed

as the envelope of a set of plane waves. We may call these plane waves

the tangential waves of the solution. Indeed their relation to the solu-

tion is comparahle with the relation of the tangents of a cui-ve to the

curve itself.

We must now obtain the functions U and V and hence the

functions a(z), b(z); A(z), B(z), from (28) by means of conditions (29),

Jhe quantity M is knovm through (10) wherein £, A , and CT sure kixown

functions of z in the layer. The application of conditions (29) to

(28) yields
U(p = a(p + b(p. V(p = A(P + B(p.

(30)

Ul(^) = i ^M(^) [a(5-) - b(p], V(p = ^Kp [a(P - B(p] .
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The eauations (30) may "be used directly to define the fanctionB a, "b and

A, B, without any reference to our preceding remarks. Indeed the purpose

of those considerations was to justify relations (3O), which otherwise

would seem rather artificial, and also to Justify the interpretation of

a. A; 13, B as amplitudes of the reflected and transmitted wave, respect-

ively.

From (30) we have

ai + "bi = ~M(a^t),
c

Applying equations (11) to C30).

Ai + B« = — M(Ap.B).
c

A+B) = 0.

Thus a, h; A, B satisfy a system of linear differential equations of the

first order, namely.

+ ti ..
i^^.

(^_^)^

(31)

AV-T^

A« + B' = — M(A-B),

(j5(-£))'= 1 ^ „2(a*.) . ^z US^\ \ 1^ „2(^ , ,,^
m

The prohlem is to find a solution a, "b; A,B which satisfies the houndary

conditions;

a(/+ 0) = 0, A(-f-»- 0) = 0,

b(-O) given B(-0) given.

The notation y+ indicates that

the value on the right of /is meant

if the functions should hswe dis-

continuities at z = /. Similarly

Fig. 6

-0 -



22.

the
the notation -0 means the value on/ left side of if discontinuities

occur at z = 0.

As in the case of the multilayer, we introduce two auxiliary

functions:

(32, e(,) = .i^^. o(,, = -iS_^.

suggested "by (IS). By differentiation,

M(a-b) a»+h'
''- -^ ^ [> ^-)]

'

/" (a+h)2
*

Hence on account of (3I) ai"i recalling that g
"^

"JT t

Similarly,

m I m /

Thus far we have the following result: The fvinctions 0(z) and

Q(z) satisfy differential equations of Riccati's type;

and are uniquely determined "by the houndary conditions

(33') p (f) - )
M(/-> 0) a,,q. . M(fi- 0)

The houndary conditions follow directly frcan the fact that

the functions 8(z) and 0(z) are continuous functions of z even if

£,^,0" have finite discontinuities. This continuity follows, as in

the former case of U(z) and V(z), "by integration of the differential

equations:
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2

e(z) -e(2^) = ^/"f4*"'^©7 ^«-

Hence, since &{f* 0) = 0, and A()?+ O) = 0, we have from (32),

e(/)=ea.o) = i^|^
.

m2(-?+ 0)

With, the f-onctions andGwe are in the position to find the

amplitudes a, "b; A, B by quadratures. We introduce in the first of (31)

the expression, from (32),

iM(a-b) = -.^9(z)(a+b),

and obtain

r^'= - ?/*»'-' •

Integrating, _ u) P^jaq^^
a + b=(a + b)e ^ J ^00 p

where the subscript has the same meaning as in section h, i.e. the value

for z<0. Putting z < in (32) and solving for a + b ,

and hence

a + b =

» ! 1) s
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Solving (32) for a-b and Inserting the value of a+b just found.

^ /"MO d«
2t),

« M •
' ''O

M
o

Hence, solving these two equations for a and b, we have the result: If

0(z) andQ(z) are the solutions of the problem (33) then the solutions

a, b; A, B of (3I) are given by the fomalae ;

a = M c

° 1- 1C2.
M

//"

s- ;;
• » ^

d dz.

1 - 1 c?^

B _ * M

m

The formlae (35) are obtained froo (3I+) by replacing A< by m^ and © by 0.
If these values of a, b; A, B are inserted in the first of equations (30)

and the resulting values of U and V are put in (8) we shall have expressions

for Up and v .

It is to be noted that fonmilas ij>h) and (35) hold for

z < as well as for z > 0. In particular, a(-0), b(-0), A(-0), and B(-0) can

be computed by letting z approach zero through negative vsdues.
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7« The Slectromagnetlc Tleld in the Contlmipas Layer.

The precediiig eonslderations and results make it possihle to

construct the electromagnetic wave which travels throu^ the medium. We

have seen that this wave can he represented hy vectors B and E having

the form
_ / \ iiJt
E = (u^.Ug.u^) . e ,

H = Uj^.v^.T^) . e .

The vectors u = (ti_ ,u ,u ) and v = (•i»Vp»T-») depend only on x and z.

We have foUnd the components u- and Vp and represented them as envelopes

of plane tangential waves:

where a, b; A, B are given hy (3U) and (35).

As in the case of the multilayer (section 5) we introduce the

direction cosines of these plane waves:

^(^)fr^ p(p = B,^ p,

.

Since

q =^l-p ,

we may interpret

p = sin ^,
Q = cos Q?,

as the continuously varying direction cosines of the wave normal, and thus

recognize the relation.

Tofu -^ = m/7<r sin^= ^V^T" sinQ?
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as Snell's law of refraction, extended to media with contiimouBly Tarying

£ ^M, andCr.

With this notation:

-iW m/ZT fpx - q(B-nl -i^ m/i:fcx + q(z-nl

in which a, "b; A, B are given in (3I1) and (35). We now represent not

only the con5>onent8 Up and t_ Ijttt the whole vector (u, ,u_,u ) and

(. ,T ,v_) as envelopes of tangential plane waves:

and the remaining prohlem is to find the four vectors,

(a^.ag.a-) amplitude of reflected electric field,

(l),.!) ,1) ) a]Q)litade of transmitted electric field,

(A^»A.,A^) amplitude of reflected magnetic field,

(Bj^.B^.B-) amplitude of transmitted magnetic field.

We have, of coarse, the relations

^2 • ^'

^2 " '^
» ^2 - B.
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In order to find the remaining components &, ,a-; "b-,"b_; A. ,A_; B,B_ we

make use of the relations (6) which lead to similar relations between

the plane tangential waves:

m tJ

(36)

^1 ^ 2., a« ' VI /^^ a z •
_2., a« ' VI ACJ

From these equations the desired expressions for a. ,a_; "b. ,!>_13 +3
etc, can be foxind. For exas^le,

7Xi(x,t;^)=a^(5;e ^ -'+ bj^Cg^Je
^

and

m^^ ^ '^ ° [
^

^ 2
J

eqiiations
Applying the first 01/(36), equating coefficients of the two exponential

functions, and setting^=z , we obtain the values of aj and h,. Making

similar use of the four, equations (36) we find

(37) »2 = «

m
A- = ^i q a

f
(38) ^2 ' *

^> P a

^ =
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It may "be remarked that the components ti_ ,u , v and , can

alBO "be obtained "by inserting the values of Up and t_, found as descrilied

at the end of section 6, in equations (6). This method, however, will

not readily give us the qaantities a^,a ;t^,'b_; A^.A,; 2i»2-i«

We conclude from equations (37) and (38):

1) The two reflected vectors (a^,a ,a ) and (A^,A ,A ) are

perpendiculcJ to the wave normal (p.O,-<i.) of the reflected wave . In

fact: The two scalar products a^p + a .0 + a (-q) and A^p •• A^.O -A-C-q)

are zero.

2) The two transmitted vectors ("bj^.h^.'b ) and (Bj^.B^.S )

are perpendicular to the wave normal (p.O,q) of the transmitted wave.

These two statements estahlish the transverse character of

the electromagnetic waves,

3) The electric and magnetic vectors are perpendicular to

each other.

Indeed: (a-,ap,a ) is normal to (A,,A ,A ) ,

and (tj^.^b^.t,) is normal to (Bj^.B^.B )

These results suggest the possibility of determining the

electromagnetic vectors not with respect to the original fixed coordinate

system, "but v;ith respect to a system which changes with the direction of

the wave front. We choose the wave normal N as z'-ajcis and the original

y-direction as the y '-direction; the x'-direction is then determined.

It is customary to call the y'-contponent of a vector the normal or

S-component since the y*-direction is normal to the plane of incidence.

The X '-component is called the parallel or p-conrponent since the

x'-direction is pso-allel to the plane of incidence. In Fig, 7 and Fig. 8

the definitions are illustrated for the cases of the transmitted and re-

flected waves, respectively. These components are obtained as follows:

For the reflected wave the direction cosines of the normal are (p,0,-q);

hence the direction cosines of the p-eomponent are (-q,0,-p). Similarly,

for the transmitted wave the direction cosine of the p-component are

(q,0,p). Hence,
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Fig. g

(39)

-(qa^ + pa )

a = a.

8 2

B = B„

Su"bstitutiijg from (37) and (38) in (39), the following ex-

pressions are found:

(UO)

%-
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(^3)

and for the masnetle field

p //^o m a p „ /''o m "b

p ' / o p */

8 O

The ratios ^ , ^; sg— . s— axe determined by the equations (3H) and0000
(35). Our fomnilae (42) and (^3) thas permit us to determine the electro-

magnetic field if the amplitudea in the incident wave h (0) and "b (0) of

the electric vector and B (O) and B (0) of the magnetic Tector sire given,
£ !L

g, Eeflection and Tranemiaeion of the Contimxaaa Layer .

The reflection and tranamission of the whole system which is

illustrated in Fig. 1 is characterized hy the reflected wave in the

mediums ,/< , O" s^* ^y *^® transmitted wave in the medium A ,yW. , crl. In

the following we shall consider only the electric vector in detail* The

treatment and results for the magnetic vector are exactly similar.

We introduce the Reflection Coefficients , which are ratios of

reflected amplitudes to incident amplitudes,

a (-0)

""p^ oro7'

a^(-O)

and the Transmission Coefficients , which are ratios of transmitted ampli-

tudes to incident amplii;udes,

h (f+0)

P ^ (-0)

The formulas (U2) in conjunction with (3h) and (35) give the

following result:



31.

Let OCz) and 0(z) "be the solutions of the Hlccatl equations

- -r- \—- +M9 ), I
M =m/^-a

(33)
A

3. = ^(M ,,2^)^0' T^Tm ^

m/^ - a //.

/ 0/ °
«i^ <??

.

m = n - Ink.

which satisfy the "boundary conditions j

(33')

Then the reflection and transmission of the layer system is

given "by the expressions ;

(U6)

and

(H7)

R =
p

m

2
u

1 - i fT e„

P m2

D =

i-i
M̂ ®o

E =
8

1 * i
M̂

I-/.
iT ^o

2n^^Q m^0(Odz,

-#/
e '^ O

/'0(z)dz

Equations (U6) are o"btained "by using (1^) with (U2) and suhstituting from

(3U)and (35), Bqaations (Uy) are obtained "by using (I+5) with (U2), sub-

stituting from (31+) and (35), and using the "boundary conditions (33').
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9, Reflection and TranwuiBBion of the Maltlla7er.

The two Elccati equations (33) &^® replaced by tvo recoreion

fonmlas (19) in the case of the multilayer. Let 6 and6)be the solutions

of the tvo recursion fornalas

1 + C/^tan M.,T„ , ^/C^"'^'V° ^'^"^
1 ^^.-i ^^ M,T,

which satisfy |. M
i -^ . a - i

-^^

"r*l
>r.l* r T

Again let the reflection and traj&saission coefficients he

defined hy (U4) and (^5), respectively. We note that in any layer a •= a^

and h = 1»^« In order to calculate & and "b ve first use (6) together
8 •' P P

with (8) and the expressions for 17(2) and 7(z) found for the oniltilayer,

thas obtaining the three ccniponents of the reflected field and the trans-

Bitted field, respectively, in any layer. Applying these steps for the

lower "boundary layer and using (39) and the relation M^ = nj /a.^ q^^, we

obtain

0*/ ''•o'

^ (-0) - A^^ . b (-0) - B ^
p O ' p OB

"" ° A
How applying formula (22) and the corresponding formula for ~ , we have

m=

i*Ib2©„ 1*1^0.
(W) S - 2

, K_ . 1

f 1 - 1^O ^^ Mo
o

In a similar way we find

JFrb(^0)« B./^ .

P ""^ "r+1
Making use of the relations b_,-= a 'b , B_,= A + B . and1^1 r r r+l r r'

e^lyiug (23) and (26),we get
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rr^i %

p 2 ^'= 1 2m
o

1 - i n^ ©^ COS M T,,+ n^^OslnM,!3fffl

1

(1+9) *o " ' ' «.

r

D^ «—

^

TT
'^

It Is of coasldera'ble Interest that the preceding formulas for

the Bultllayer, namely (19)» (^) and (^9j which were Just deriTed on the

'basis of multilayer theory alone, can he derired frooi the equations (33),

(U6) and (Uj) which are valid for the continuous variation of the suh-

stances. Let us, for exanrple, consider the equation

In the vZ-th layer both M and/< are constants, M
^^
and/^^,and the differential

equation can he integrated readily. Let 0^ •= ©(^). We have from (33),

»« 2n

„2 ~ T »

and thus

arc tg^ - arc tg /^ «. = ^ **^ ^^'^^^*

Solving for 0(s), we have

0(0 =: Ll ,

valid in the »'-th layer. But we have remarked already that 0(z) must he

continuous even in case of discontinuous E^Mt CT • Hence 8^= 0(^^,+ O) »

0(^^- 0). Letting zsY' , in our former formula we must ohtain on the

left aide the quantity ©^,1 • Ti^e resiilt of this is the recursion formula

(19): K
0^ - _il tan K. T.

1 + 0, '^an M^T,
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Similarly, the second recursion fornrula (19) can be derived.

In order to derive the expressions (14-9) from (^-J) we first

letermine the integral ^ J .

/^O dz. We write

^-1

0»
da

V-1 ^-1 •^'-1 ^v/ 2

. ,__v 2n _ 0'
since, from v33)t -T" 5

m'
2

The integral is therefore equal to - log '

—

.

On account of the recursion formula for Gl,!

*^<-i =
if, */^v«;^ ^^ I (1 +0^© tanM.T.j2

and hence

2n
di » log (cos K^T^+ ^0^ sin M^T^) .

^-1

Finally,

V-1
*'

i

^ y
/^e dz = log TTT (cos M^v 'r^

o^^si^^ w^'^t.) •

By introducing this in the second ecpiation (Uy) the second equation (^9)

is obtained. Similarly the first equation (^-9) can "be derived from the

first eqaation (47).
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10, The case of Hormal Incidence,

The difference "between normal and parallel components loses

point If the Incident wave front is parallel to the xy-plane. The

parallel component of the transmitted wave coincides with the x-coo^onent

in the original coordinate system. The parallel eoiQ>onent of the re-

flected wave coincides with the negative z-coiaponent of the original

system. Consequently we expect the following relations in this case:

B = - R ,

(50)
P

D = D ,

P 8

We prove these relations only for the case of continuoas variation since

we have seen that the multilayer case can he considered as a special case.

In case of normal incidence we have p *^ and M ^ m V^
;

hence the Riccati equations are

(51) ^/ 9« o o
= ^ (^ * m^e^) *

and the houndery conditions are

If we write the second equation (51) in the form

and the second hoondary condition

we readily recognize the relation
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We thus introduce © = - '®n ia the expresBion (U6) for R and ohtain

1 -l^ gi 1 + i &
72r mo

E = 22—2 2_

,— mo

On the other hand

1 -H^ 6
m

E = "

° l-i£I Q
u o
o

Hence the relation E = - R is proved.
P °

In order to show the relation D = D we consider the integral
p s

From (51)

2n m^ 9> 2n

Hence

end

5r =5 = -r--T/'« •

/ /

^ / =^ .. . 10. 5«({1 - f ^d..

m.

We introduce the houndary condition 6(/) = i and find

m /

D_ = . e
p Dl

9^ + i _£

/A
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or /

2 -t//"»^-
n

l-l^^P
e

ffi o

which is Identical with the expression for D if the sul^stitution
s

M = m JW 1-8 made,
ov

From these considerations it follows that in case of normal

incidence only the quantities E and D need to be considered. We forma-
S 8

late our results for this case, calling

R = R and D = D
8 8

the reflection and transmission respectively, for normal incident waves.

1) Continuous Variation ;

Let 0(z) Ije the solution of the Riccati Equation

(52) ®' = T ^"^ V'®^^

which satisfies the 'baundary condition

(52') o(i^) = i-^

Then the reflection and transmission of the layer-system for normal inci-

dent waves is given hy the expressions:

C53)
fi = pq o

..M
m

C3.) — - -
--^^^'^-

1 - iiO©
m
o



2) The Mtiltllayer :

Let 0^*66 the eolution of the recurelon fomala

Oy-— tan U^^^T^)

(55) 0^.1
jZL

1*0.^^

vhlch eatlBfles the hcrandary conditions

0=1^

Then reflection and tranemiss ion of the sailtilajrer for a nonnally incident

wave are given hy ths expressions:

1 + 1^0
Oft o

C56) B

1-1
m̂ o

(57) D

m^ ®o COB nvv^ T^+ ^^-^ ©^ sin mj'pl

11. Conseryation of Bnergy .

In many applications one is aminly interested in the absolute

values of £ and D, i.e., in the qtiantities {rI and iD\ , which determine

the intensities of the reflected and transmitted waves respectively. If

that is the case it may not he necessary to carry oat the integrations in

(U7) in order to find JD \ and |D
| , E and R are ohtained directly

from (^6), and in case the first two media, i.e., the lower "boundary

medixun and the layer, are dielectrics,
|

I)
|

andlD I can "be related to

R and R "by formalas resulting from the general statement of conservation
P 8

of radiation energy. In order to derive this statement we consider first

the functions IT and 7 which satisfy equations (11 ). We shall assume that
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2
the lower 'boundary medium Is a dielectric; hence cr = and m is real.

The function U aM its conjugate fxmction U satisfy the

eqtiations

^(El)'^4 m'^=o .Y

/^/^
c

We multiply the first equation hy U and the second equation hy U and sub-

tract the results. This gives us

[,<-/..<ZL>].^n'? (M^ - M^) U U = 0.

Since

and

TJ U« - U U'
"^

^ ju* ^ju' dz ju

i
,

it follows that

(58) l^t.[^^^:^^]-hl^-.

A similar equation can "be derived for the function V. We have

m^ c2 m^ •

We multiply the first equation by V, the second hy V and subtract ohtaining

n.-) -'(?)'* 7 (S
Y V = .

Since

V V» V V
<i'^ 1^2 i2 -^m-A i)'-'^"&-?
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v« can write

Bat

ds
Lll
n

7 T»
-2 -iT'lVi^-i^ * ^S^-S^

L. - »^- "^
» gncri

-2 ~ 2 -e 2-2

.2 i2
'o/^

8ncri

^B2 =2

Honce

d_
ds 1-^

y y«

£2

8nOT.

cJb2 ^
or finally,

(59) ic^ 4

T«
o)

.2 -'oA^o
- .

+ 0"
2 2-2

6J B B
7«

2 2

2-5
B B

\^\' 0.

Ihe two relations (38) and (59) contain the stateaent of

conservation of energy In oar electric field. In fact they are equlralent

to the well-known ener^ relation which can te derived directly froa Max-

well's equations (l), as we shall show. It Is readily verified that eqaa-

tions (l) are satisfied hy the con^agates 1 and H as well as hy S and H,

lAich are complex vectors of the fora 1» + !! and H' •* IH". Coahining

eqoations (l) after suitahle scalar Baltiplleations in order to ohtain the

expression on the left helow, we hare

f carl H-H carl f 1 curl l-H carl I « ^H^'z a •»• i. A (gjm +MHH) ,

or, on aoeoont of the vector Identity, valid for complex vectors,

A curl B-B carl A = div | Bxa] ,

Ihe derivation of ec[aation (6l) is siailar to that found in texts on
electroaa^etic theory, cf Stratton, p I33,



hi.

We now Introduce the vector

(60) [(a X h) 4. (I X sjj .

vhlch is kaiown as Poyntlng's Radiatloa vector. We oljtain the familiar

statement

dgced heat 0" S , and the radiation div S, add up to zero.

The statement (6I) simplifies for the stationaiy solution

X = ue

H = ve

icJb

i6>t

The electromagnetic energr

becomes independent of t. Hence we have the relation

(62)

in which

(63)

div S + Cr|u| = 0,

S = 1^ Ru X v)+ (u X v)] .

We have found "before that the two vectors u and v could he expressed hy

the two scalar functions U and V. On account of (S) and (6):

^
-i <^ m JIT p

= i -y- e

m w
V«

-i is? m f/T p X
^ . c c 0'/ ^0

• ^1 ^ yUU ®

^2
=

"3

-i ^ m JTT p X -i ^ m yflT p X
c ov^o ^0 _

e ' V;

m JiT p -i ^ m Ju" p X
cr/^o ^0 c 07^0 *^o

7 ; V,

^ Im" P -i — m -Sir p X
07 ^o c 07^0 -^o

r
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In order to construct the Foyntlsig rector S ve have to form

the two vector producta that follow. (The factors e "^ "oi^o Po* g^d its

conjugate are not included for they will "be nniltlplied "by each other in

each component of the cross products and thus cancel cut).

(u X )

ie
V«

^<^
U«

jUU

. !2&

(u X )=

_ ^ T'

ic
U'

. U ,
-

. V ,

"^o^
52

"o^Pq
/^

f

U

O'bviously all components S-,S ,S_ of the Poyntlng vector depend on z only.

Hence

*s, as_ as_ 3s
divS = --i+ ^+ ^= W .

c)x dy de dZ

Thus, explicitly

(6« ^- = = SSTJ ST /^ .2-52

On the other hand

(65) \-\''\< * T.|2. !a^|T|2 .
2 -em m

,2 2 -€
com m

By introducing (64) and (65) in (62) the sum of the relations (58) and

(59) is obtained, justifying our interpretation of (58) and (59) as

equivalent to the energy relation (62).

Squat ions (38) and (^9) hecome relations for the ftmctions

a,b; A,B if U,U'; V, V are replaced "by using equations (3O),
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The result is

(66)

c d
(^) (aS;-bF) + (» (aSl.ba)l -Or|a + DJ^ .

c d_
3n dz (?

*
f)<'^--'*(7-?)<--^)] "^f-lV^I^-^^oPoM

We have assumed that the first medium C , 0~ , /U is a dielectric medium,

i.e. Cq = 0, M^ real. We integrate (66) from to/ and remember M_ = H.

anda(f) « A< f') = 0.

We oljtaiii

c

[-^M=-?<Kl^-lM=']-/l a + 1)|^ dz
,

c

or

/

iKl==/Kl^*'^M^*^/|a*^l=?"
dE

(67)

2-2mm
iMl-^lA-Bl-^-.^^p^^lA^Bl^

or finally

Mi)
/

^lAk ^k'0 1

dz



N K

2 2
n m
o o

5"
o

2V 2 -2
B(/)
B.

m.

adz
2=5"
mm

M
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These equations are especially valuable In case that the

layer < z <^ consists entirely of dielectric substances* In this case

^=0, and hence

>A^-N'}A V^'ir yr !>."

If the leist medliim, z >/ , Is also dielectric, we have

D_r .

(70)

y'~2 2 2~
BL, W. - m u p ve conclude that R, is either

2 2 2
real or pure imaginary, depending on the sign of "^ /^i - m /^ p ,

2 2 2
In the case, m M p < "^ A^i » we thus find

(71)

J(-i\i^)-Aki=-
2 2 2

In the case, u. U ^ > ttL.lL ve find

which is the case of Total Reflection.
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12. Two Media Separated "by One Surface, rreanel's ronanlae .

We apply oar formulae to the

^.S,yMo ^.A'/-/

> 2

rig. 9

slstplest case of two media separated

lor a plane surface. Letting r =

in the expressions for and in
r r

(19) we o'btain for our special case

Ml

Hence, using (48) and (1^9),

2

1 - J:-°
M. ni2

S

(73)

—^r^
1 + _ -A

E^^

E =
8

1 \fk

,
_ »^A "^



U7,

By introducing
o _

si.n(p.

\ 8ln
(//^

obtained in the customary form:*

in these fonoilas Fresnel's relations are

H =-

(7^)

D =

tan^C^^ •»-^;

2 sitiCf. cos
(fi

R =
8in((^-<^^)

8 8in(^j_+ Cf^)

D =
2 sin </?, cos <^

_ 1 ^0

p ~ BinC(^ +Cf>.j^) coBi.Cp-C/'^) * s
~ "slaT^""*^

In case of normal incidence . M = W/^ and formulae (73) reduce to

R = -R =R =-pa \ 17^1
1 +

^//^,

(7^')

D = D = D =
P s

13, Three Media Separated lay Two Plane Surfaces .

(s>



Hence, ccMtinlng these formulae.

i — - — tan M,T,

M„ K^
2

4 "l

i _| - -^ tan M^T^

>2^
M„ m£
_2l*l-|jj^tanM,T^

148.

We introduce these quantities ,© , ®i» ©it ^O- *^® equations (1<^) and

{hS) and ohtain the reflection and transmission of the layer as functions

of the thickness, 1=31/ of the layer. The results are
i. A

om
cos "1^1^

2
^2^ 1'

^ '-mT - JT - ^^^^^1

^4%
°»2>

cos M.T- • 1

m^ IL >

o^^

(75)

D =
P m^ M^

2

i^

l^^^lcos M^T^* i(-|- * r-Tl ^^^^'^ir~2cm ig Mj_

E =
s

(76)

D =

(' -m cos Vl
AA Ao^^

sin M,T,

./^v
r;^;*^^"^^1* ^(|r *^T>^^Vi^ «o/^]

•

'' -^i
COS K-TM^a

2 ^ ^A sin K,TM^l



(77)

M9.

In the special case of normal Incidence,

°o//2/ ^^^ ^ WV/2 "oVA/ ^^^ ^

P «

(x .
"^J|)«.

^^, ., .
.(^
f . ^g) ... ^/r, n

IH. Concltislon ,

She theor7 presented here Is complete In Itself. All the

desirable Information on the heharlor of a plane wave Incident upon either

a series of layers, each with constant <f, A , 0% or Incident upon a layer

with continuously varying £ tM » 0", can he computed from the fomnlas

derived. Particular attention should he called to the fact that the

theory contains as special cases many known results on the behavior of a

plane wave incident on a plane surface separating two media.

She problem of determining an electromagnetic field under

any given conditions is the problem of determining six quantities, the

three cooiponents of the electric field and the three con^onents of the

magnetic field. Such problems are often attacked by means of scalar and

vector potentials from which the electraaagnetic field can be derived, or

by working with the Hertz vector from which, also, the electromagnetic

field can be derived. This pe^er reduces the problem of finding the

field to the solution of two ordinary differential equations of second

order, which are then transformed into Hiccati equations. This reduction

of the solution of Maxwell's equations to ordinary differential equations

is not in itself new. It is the special sirapllelty of the equations

here used which merits scne attention.

The relationship of this paper to the attack on the problem of

radio wave propagation in non-homogeneous atmospheres should now be noted.

It has already been remarked that the agpproach contes^)lated is that of
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representiiig an arbitrary soirree as an Integral of plane wayee. (For some

indication of earlier work aloog such lines see the discussion In Stratton

p. 577 ff, ). With the beharior of plane waves in non-homogeneotts media

known, a major step in this plan is accomplished. The theory will ultim-

ately lead to a conplax integral and it is likely that much difficulty

may he encountered in the evaluation of this integral, even approximately,

Severtheless, this approach seems to warrant consideration as compared

with previous efforts made in this field.

It mst be remarked further that the theory of this paper,

as well as the extension Just mentioned, presupposes a flat earth. To

take care of the earth's curvature it will probably be necessary to use

some modification of '^ue true index of refraction, such as has been em-

ployed in other studies.
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